Ֆիզիկական մեծությունների մի մասը բնութագրվում է միայն թվային արժեքով, մյուսները, բացի թվային արժեքից, բնութագրվում են նաև ուղղությամբ: Առաջինները կոչվում են սկալյար մեծություններ, իսկ երկրորդները՝ վեկտորական մեծություններ:
Սկալյար մեծություններ են, օրինակ, ժամանակը, զանգվածը, անցած ճանապարհը, ճնշումը և այլն: Վեկտորական մեծություններ են տեղափոխությունը (S), արագությունը ( V ), արագացումը ( a ), ուժը (F) և այլն: Վեկտորական մեծությունները (կամ վեկտորները) նկարում պատկերվում են ուղղություն ունեցող հատվածներով: Հատվածին ուղղություն վերագրելու համար դրա ծայրակետերից մեկը ընդունվում է որպես սկիզբ (սկզբնակետ), իսկ մյուսը՝ որպես վերջ (վերջնակետ), ապա սկիզբը սլաքով միացվում է վերջին:
Սլաքը ցույց է տալիս այդ վեկտորի ուղղությունը, իսկ հատվածի երկարությունը` վեկտորի թվային արժեքը (ընտրված մասշտաբին համապատասխան):
Սահմանում։ Հատվածը, որի ծայրակետերից մեկը ընտրված է որպես սկիզբ, իսկ մյուսը՝ որպես վերջ, կոչվում է ուղղորդված հատված կամ վեկտոր։
Վեկտորները նշանակում են վերևում սլաք ունեցող լատիներեն երկու մեծատառերով, որոնցից առաջին տառը վեկտորի սկիզբն է, երկրորդը՝ վերջը, օրինակ

Վեկտորները նշանակվում են նաև լատիներեն մեկ փոքրատառով, օրինակ,


Սահմանում։ Վեկտորը, որի վերջն ու սկիզբը համընկնում են, կոչվում է զրոյական վեկտոր։Զրոյական վեկտորը պատկերվում է մեկ կետով: Եթե զրոյական վեկտորի սկիզբն ու վերջը A կետն է, ապա այն նշանակում են

կամ

Սահմանում: Ոչ զրոյական AB վեկտորի երկարություն կամ մոդուլ՝ AB, կոչվում է AB հատվածի երկարությունը։

Իսկ ինչպես պարզել՝ նո՞ւյնն են վեկտորների ուղղությունները, թե՞ տարբեր:
Սահմանում։ Երկու վեկտոր կոչվում են համագիծ, եթե դրանք միևնույն ուղղի կամ զուգահեռ ուղիղների վրա են, հակառակ դեպքում դրանք կոչվում են տարագիծ։ Կհամարենք, որ զրոյական վեկտորը համագիծ է ցանկացած վեկտորի։

Նկարում

վեկտորները համագիծ են, իսկ օրինակ՝

վեկտորները տարագիծ են: MM զրոյական վեկտորը համագիծ է բոլոր վեկտորներին:
Ոչ զրոյական համագիծ վեկտորները կարող են ունենալ նույն ուղղությունը կամ հակառակ ուղղություններ: Առաջին դեպքում ասում են, որ վեկտորները համուղղված են, իսկ երկրորդ դեպքում՝ հակուղղված են:

Նկարում AB և CD վեկտորները համուղղված են, իսկ CD և EF վեկտորները՝ հակուղղված:

գրառումը նշանակում է, որ a և b վեկտորները համուղղված են, իսկ

գրառումը նշանակում է, որ a և b վեկտորները հակուղղված են:
Զրոյական վեկտորը համարվում է համուղղված ցանկացած վեկտորի։
Զրոյական վեկտորը համարվում է համուղղված ցանկացած վեկտորի։
Սահմանում: Համուղղված և հավասար երկարություն ունեցող վեկտորները կոչվում են հավասար վեկտորներ։
a և b վեկտորների հավասարությունը գրվում է այսպես՝

Ցանկացած M կետից կարելի է տեղադրել տրված AB վեկտորին հավասար վեկտոր, ընդ որում՝ միայն մեկը։
Եթե AB վեկտորը զրոյական վեկտոր է, ապա MM վեկտորը որոնելի վեկտորն է: Ենթադրենք՝ AB վեկտորը ոչ զրոյական է: Որոնելի վեկտորը պիտի համուղղված լինի AB վեկտորին: Հետևաբար այն կարող է գտնվել կամ AB ուղղի կամ AB ուղղին զուգահեռ ուղղի վրա: M կետով տանենք AB ուղղին զուգահեռ m ուղիղը: Եթե M կետը պատկանում է AB ուղղին, ապա որպես m ուղիղ կվերցնենք AB ուղիղը:

m ուղղի վրա M կետից կարելի է տեղադրել AB հատվածին հավասար
երկու հատված: Թող դրանք լինեն MK և ML հատվածները: MK և ML հակուղղված վեկտորներից մեկը, և միայն մեկը, համուղղված է AB
վեկտորին: Հենց դա էլ կլինի որոնելի և միակ վեկտորը:
Առաջադրանքներ․
1)

տարագիծ հակուղի
2)

3)

4)

5)

6)

7)Գծեք AB, CD և EF վեկտորներն այնպես, որ՝
ա) AB, CD և EF վեկտորները լինեն համագիծ
բ) AB և EF վեկտորները լինեն համագիծ, իսկ AB և CD վեկտորները համագիծ չլինեն