Գծելով y = x2 ֆունկցիայի գրաֆիկը՝ ստացվում է նկարում պատկերված կորը։

Այդ գրաֆիկն անվանում են պարաբոլ: Պարաբոլի (0, 0) կետն անվանում են պարաբոլի գագաթ, իսկ գագաթից ձախ ու աջ ձգվող կորերը՝ պարաբոլի ճյուղեր:

Նշենք գրաֆիկի որոշ առանձնահատկություններ․

1)Ֆունկցիայի գրաֆիկն անցնում է կոորդինատների սկզբնակետով:

2)Բացի 0-ից, մնացած բոլոր կետերում ֆունկցիայի գրաֆիկը գտնվում է x-երի առանցքից վերև:

3)Գրաֆիկը համաչափ է y-երի առանցքի նկատմամբ:

4)Ֆունկցիան աճում է [0, +∞) միջակայքում:

5)Ֆունկցիան նվազում է (−∞, 0] միջակայքում:

6)Ֆունկցիայի որոշման տիրույթը R-ն է, իսկ արժեքների տիրույթը՝ [0, +∞):

Առաջադրանքներ․

1)Տրված x-երի համար գտե՛ք y-ի այնպիսի արժեք, որ (x, y) կետը լինի y = x2 պարաբոլի վրա.
ա) x = 0 y=0
բ) x = 3 y=9
գ) x = — 3.2 y=3.2
դ) x = 111 y=222
ե) x = √5.5 y=5.5
զ) x = — √13 y=13
է) x = 2√3 y=23
ը) x = — 6√1.5 y=54

2)Հայտնի է, որ (x, y) կետը պատկանում է y = x2 պարաբոլին: Գտե՛ք y-ի տրված արժեքի համար x-ի բոլոր հնարավոր արժեքները: Քանի՞ այդպիսի x կա.
ա) y = 0 x=0
բ) y = 25 x=5
գ) y = 196 x=96
դ) y = 2.89 x=1,445
ե) y = — 16 x=-8
զ) y = -2 x=1
է) y = 2 x=1
ը) y = 45 x= 22,5

3)Ո՞ր կետերում է տրված ուղիղը հատում y = x2 ֆունկցիայի գրաֆիկը.
ա) y = 0
բ) y = 6
գ) y = — 1.1
դ) y = 64

4)Կառուցե՛ք y = x2 ֆունկցիայի գրաֆիկի համաչափը x-երի առանցքի նկատմամբ:

5)Տրված է y = x2 ֆունկցիան: Ո՞ր կետերում է ֆունկցիան ընդունում ա) 9, բ) 0, գ) 15, դ)– 25 արժեքը: