Եռանկյունների նմանության առաջին հայտանիշը․
Եթե մի եռանկյան երկու անկյունները համապատասխանաբար հավասար են մյուս եռանկյան երկու անկյուններին, ապա եռանկյունները նման են:
Եթե ∢B=∢E և ∢C=∢F, ապա ΔABC∼ΔDEF

Եռանկյունների նմանության երկրորդ հայտանիշը․
Եթե մի եռանկյան երկու կողմերը համեմատական են մյուս եռանկյան երկու կողմերին, իսկ այդ կողմերով կազմված անկյունները հավասար են, ապա եռանկյունները նման են:
Եթե AB/DE=AC/DF և ∢A=∢D, ապա ΔABC∼ΔDEF

Եռանկյունների նմանության երրորդ հայտանիշը․
Եթե մի եռանկյան երեք կողմերը համեմատական են մյուս եռանկյան երեք կողմերին, ապա եռանկյունները նման են:
Եթե AB/DE=BC/EF=AC/DF, ապա ΔABC∼ΔDEF

Խնդիրներ լուծելիս, սկզբում պետք է համոզվել, որ տրված եռանկյունները նման են: Եթե եռանկյունների նմանությունը տրված չէ, ապա դա պետք է ապացուցել:
Առաջադրանքներ․
1)Նման են ABC և A1B1C1 եռանկյունները, եթե AB = 3մ, BC = 4մ, AC = 6մ, A1B1 = 9մ, B1C1 = 12մ , A1C1 = 18մ:
նման էն
2)Նման են երկու եռանկյուններ, եթե մեկի կողմերը հարաբերում են ինչպես 3:8:9, իսկ մյուսի կողմերը 24 սմ, 9 սմ, 27 սմ են:
նման էն
3)ABC և BCD եռանկյուններում AB = 36 սմ, BC = 18սմ, AC = 20 սմ, DC = 9սմ, DB = 10 սմ: Ապացուցեք, որ ΔABC ~ ΔBCD :
ab<=>bc
ac<==>bd
bc<==>cd
4)O գագաթով անկյան կողմերից մեկի վրա վերցված են A և B, իսկ մյուսի վրա C և D կետերը այնպես, որ AO = 4 սմ, BO = 7սմ, OC =12 սմ, OD = 21սմ: Նման են OAC և OBD եռանկյունները:
նման են
5)Ըստ նկարների տվյալների՝ գտեք x–ը և y–ը։

8:2=12x
6)M-ը և N-ը ABC եռանկյան համապատասխանաբար AB և BC կողմերի միջնակետերն են: Ապացուցեք, որ ABC եռանկյունը նման է MBN եռանկյանը:
nman en