1)Մի քառակուսու կողմը k անգամ մեծ է մյուս քառակուսու կողմից: Գտե՛ք այդ քառակուսիների մակերեսների հարաբերությունը:
2)Քառակուսաձև սենյակներից մեկի կողմը 2 անգամ փոքր է մյուսի կողմից: Գտե՛ք փոքր սենյակի մակերեսը, եթե մեծի մակերեսը 36 մ է:
36×2=72
3)Խոհանոցի պատը երեսապատված է 15 սմ կողմով քառակուսաձև 120 սալիկով: Քանի՞ ուղղանկյունաձև նոր սալիկ է պետք նույն պատը երեսապատելու համար, եթե նոր սալիկների կից կողմերը 10 սմ և 20 սմ են:
10+20=30
120:30=4
4)Գտե՛ք 54 սմ պարագծով ուղղանկյան մակերեսը, եթե՝ ա) կից կողմերից մեկը մյուսից մեծ է 3 սմ–ով, բ) կից կողմերը հարաբերում են, ինչպես 4 : 5, գ) կողմերից մեկը (b + 17) սմ է:
Եթե բազմանկյան բոլոր գագաթները գտնվում են շրջանագծի վրա, ապա շրջանագիծը կոչվում է այդ բազմանկյան արտագծյալ շրջանագիծ:
Շրջանագծի կենտրոնը հավասարահեռ է բազմանկյան բոլոր գագաթներից, հետևաբար այն գտնվում է բազմանկյան կողմերի միջնուղղահայացների հատման կետում:
Ոչ բոլոր բազմանկյուններն ունեն արտագծյալ շրջանագիծ՝ հաճախ բազմանկյան համար գոյություն չի ունենում այնպիսի շրջանագիծ, որը կանցնի բազմանկյան բոլոր գագաթներով:
Քանի որ եռանկյան կողմերի միջնուղղահայացները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի արտագծյալ շրջանագիծ:
Սուրանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյան ներսում (տես ներքևի նկարը):
Ուղղանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյան ներքնաձիգի միջնակետում (տես ներքևի նկարը):
Բութանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյունից դուրս (տես ներքևի նկարը):
Ներգծյալ շրջանագիծ․
Եթե բազմանկյան բոլոր կողմերը շոշափում են շրջանագիծը, ապա շրջանագիծը կոչվում է այդ բազմանկյան ներգծյալ շրջանագիծ:
Ներգծված շրջանագծի կենտրոնը պետք է հավասարահեռ լինի բազմանկյան կողմերից, այսինքն լինի կիսորդների հատման կետում:
Քանի որ եռանկյան անկյունների կիսորդները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի ներգծյալ շրջանագիծ:
Քանի որ, ցանկացած եռանկյան անկյունների կիսորդները հատվում են եռանկյան ներսում, ապա ներգծյալ շրջանագծի կենտրոնը միշտ գտնվում է եռանկյան ներսում:
Առաջադրանքներ.
1.Նշիր եռանկյունները, որոնց արտագծված է շրջանագիծ:
2.Նշիր եռանկյունները, որոնց ներգծված է շրջանագիծ:
3. Եռանկյանը ներգծված է շրջանագիծ: Հաշվիր <COA, <AOB, <COB եթե ∢OMN=32° և ∢ONL=37°
4.Ներգծյալ շրջանագծի շոշափման կետում հավասարասրուն եռանկյան սրունքը տրոհվում է 3սմ և 4սմ երկարությամբ հատվածների՝ հաշված հիմքից։ Գտեք այդ եռանկյան պարագիծը։
5.Գտեք 6 սմ և 8 սմ էջերով և 10 սմ ներքնաձիգով ուղղանկյուն եռանկյանը ներգծած շրջանագծի շառավիղը։
1)O կենտրոնով շրջանագծի AB աղեղը 90o է։ Գտեք O կետի հեռավորությունը AB լարից, եթե AB = 24 սմ։
2)O կենտրոնով շրջանագծի AB աղեղը 120o է։ Գտեք O կետի հեռավորությունը AB լարից, եթե շրջանագծի շառավիղը 20 սմ է։
3)AB — ն և AC — ն շրջանագծի լարեր են։ <BAC = 70o , աղեղ AB = 120o ։ Գտեք AC աղեղի աստիճանային չափը։
4)Շրջանագծում տարված են AB տրամագիծը և AC լարը։ Գտեք BAC անկյունը, եթե կիսաշրջանագիծը C կետով տրոհվում է AC և CB աղեղների, որոնց աստիճանային չափերը հարաբերում են, ինչպես 7 : 2 :
5)AB — ն շրջանագծի տրամագիծն է։ Շրջանագծի վրա վերցված է C կետն այնպես, որ BC լարը հավասար է շրջանագծի շառավիղին։ Գտեք ABC եռանկյան անկյունները։
Շրջանագծի ցանկացած երկու կետեր շրջանագիծը տրոհում են երկու մասի, որոնցից յուրաքանչյուրը կոչվում է շրջանագծի աղեղ:
Եթե շրջանագծի վրա նշենք երկու կետ, ապա առաջանում են երկու աղեղներ: Այդ պատճառով աղեղի նշանակման համար օգտագործում են լատիներեն երեք տառ, որոնք կարող են լինել ինչպես մեծատառեր, այնպես էլ՝ փոքրատառեր:
Վերևի նկարում կարող ենք նշել BDH, ACG և մյուս աղեղները:
Ներքևի նկարում գծված են AxB և AyB աղեղները:
Աղեղը կոչվում է կիսաշրջանագիծ, եթե նրա ծայրերը միացնող հատվածը այդ շրջանագծի տրամագիծ է:
Կենտրոնային անկյուն․
Անկյունը, որի գագաթը շրջանի կենտրոնն է, կոչվում է նրա կենտրոնային անկյուն:
Դիցուք O կենտրոնով շրջանի կենտրոնային անկյան կողմերը շրջանագիծը հատում են A և B կետերում: AOB կենտրոնային անկյանը համապատասխանում են A և B ծայրերով երկու աղեղ: Եթե <AOB-ն փռված է, ապա նրան համապատասխանում է երկու կիսաշրջանագիծ: Իսկ եթե անկյունը փռված չէ, ապա ասում են, որ այդ անկյան ներսում ընկած աղեղը փոքր է կիսաշրջանագծից, մյուսը՝ մեծ:
Շրջանագծի աղեղը կարելի է չափել աստիճաններով:
Եթե O կենտրոնով շրջանագծի AB աղեղը փոքր է կիսաշրջանագծից կամ կիսաշրջանագիծ է, ապա համարվում է, որ նրա աստիճանային չափը հավասար է AOB կենտրոնային անկյան աստիճանային չափին:
Իսկ եթե AB աղեղը մեծ է կիսաշրջանագծից, ապա համարվում է, որ նրա աստիճանային չափը հավասար է 3600 — <AOB:
Այստեղից հետևում է, որ շրջանագծի՝ ընդհանուր ծայրեր ունեցող երկու աղեղների աստիճանային չափերի գումարը հավասար է 3600:
Ներգծյալ անկյուն․
Այն անկյունը, որի գագաթն ընկած է շրջանագծի վրա, իսկ կողմերը շրջանագիծը հատում են, կոչվում է ներգծյալ անկյուն:
Ներգծյալ անկյունը չափվում է այն աղեղի կեսով, որի վրա նա հենվում է՝
∡ACB=1/2∪AB
1. Նույն աղեղի վրա հենված ներգծյալ անկյունները հավասար են:
2. Կիսաշրջանագծի վրա հենված ներգծյալ անկյունը 90° է:
Առաջադրանքներ․
1.Որքա՞ն է ներգծյալ անկյունը, որը հենված է 28° աստիճանային չափով աղեղի վրա:
2.Դիցուք BAC անկյունը 35° է: Որքա՞ն է BnC աղեղի աստիճանային չափը։
3.Գտիր ASB անկյունը, եթե ASB աղեղի աստիճանային չափը 268° է:
4.Գտիր BOC և BAC անկյունները, եթե ∪AB=130° ∪AC=150° ։
5.Հաշվիր AOB եռանկյան անկյունները, եթե ∪AB=100°։
6. ACB աղեղի աստիճանային չափը 260° է: Գտիր AOB և ACB անկյունները:
Կոնը կարելի է ստանալ՝ պտտելով POA ուղղանկյուն եռանկյունը իր էջերից որևէ մեկի, օրինակ՝ PO-ի շուրջ: Նույն կոնը կստացվի, եթե APB հավասարասրուն եռանկյունը պտտենք PO բարձրության շուրջ:
PO ուղիղը կոչվում է կոնի առանցք, որը պարունակում է կոնի H բարձրությունը:
Կոնի առանցքային հատույթը, որը անցնում է նրա գագաթով, հանդիսանում է PA և PB սրունքներով հավասարասրուն եռանկյուն: PA-ն և PB-ն կոչվում են կոնի ծնորդներ և նշանակվում են l տառով:
Եռանկյան պտույտից առաջացած O կենտրոնով շրջանը կոչվում է կոնի հիմք:
Կոնի շառավիղ կոչվում է նրա հիմքի R=OA=OB շառավիղը:
Առաջադրանքներ․
1)30o անկյուն ունեցող ուղղանկյուն եռանկյունը պտտվում է մեծ էջի շուրջը։ Գտեք պտտումից առաջացած կոնի ծնորդը, եթե այդ կոնի շառավիղը 15 սմ է:
2)Կոնի առանցքային հատույթը 12 սմ կողմով հավասարակողմ եռանկյուն է։ Որոշեք այդ կոնի շառավիղն ու ծնորդը։
3)Կոնի առանցքային հատույթը հավասարասրուն ուղղանկյուն եռանկյուն է, որի ներքնաձիգը 20 սմ է։ Գտեք այդ կոնի շառավիղը։
Գլան կարելի է ստանալ՝ պտտելով AA1O1O ուղղանկյունը իր կողմերից որևէ մեկի, օրինակ՝ OO1-ի շուրջ: Նույն գլանը կարելի է ստանալ՝ պտտելով AA1B1B ուղղանկյունն իր հանդիպակաց կողմերի միջնակետերով անցնող OO1 ուղղի շուրջ:
OO1 ուղիղը կոչվում է գլանի առանցք, AA1-ը և BB1-ը՝ ծնորդներ: Գլանի H բարձրությունը հավասար է OO1=AA1=BB1 հատվածներից յուրաքանչյուրին:
Պտտման ընթացքում առաջացած երկու շրջանները կոչվում են գլանի հիմքեր:
Գլանի R=OA=OB շառավիղ կոչվում է նրա հիմքի շառավիղը:
Գլանի առանցքով անցնող հարթության և գլանի ընդհանուր մասը կոչվում է գլանի առանցքային հատույթ: Գլանի առանցքային հատույթը ուղղանկյուն է: Վերևի նկարում դա AA1B1B ուղղանկյունն է:
Առաջադրանքներ․
1)Գլանաձև բաժակը կիսով չափ լցված է թեյով։Գոլորշիանալուց հետո թեյի հետքը մնացել էր բաժակի պատերին։ Երկրաչափական ի՞նչ պատկեր է այդ հետքը։
2)Գլանի առանցքային հատույթը քառակուսի է։ Գտեք գլանի ծնորդի և շառավիղի երկարությունների հարաբերությունը։
3)Գլանի առանցքային հատույթը 40 սմ պարագծով մի ուղղանկյուն է, որի անկյունագծերը փոխուղղահայաց են։ Գտեք գլանի շառավիղը։
4)Գլանի առանցքային հատույթը մի ուղղանկյուն է, որի անկյունագիծը ծնորդ հանդիսացող կողմի հետ կազմում է 60o -ի անկյուն։ Գտեք այդ անկյունագիծը, եթե գլանի ծնորդի երկարությունը 6 սմ է։
Եթե բազմանկյան բոլոր գագաթները գտնվում են շրջանագծի վրա, ապա շրջանագիծը կոչվում է այդ բազմանկյան արտագծյալ շրջանագիծ:
Շրջանագծի կենտրոնը հավասարահեռ է բազմանկյան բոլոր գագաթներից, հետևաբար այն գտնվում է բազմանկյան կողմերի միջնուղղահայացների հատման կետում:
Ոչ բոլոր բազմանկյուններն ունեն արտագծյալ շրջանագիծ՝ հաճախ բազմանկյան համար գոյություն չի ունենում այնպիսի շրջանագիծ, որը կանցնի բազմանկյան բոլոր գագաթներով:
Քանի որ եռանկյան կողմերի միջնուղղահայացները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի արտագծյալ շրջանագիծ:
Սուրանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյան ներսում (տես ներքևի նկարը):
Ուղղանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյան ներքնաձիգի միջնակետում (տես ներքևի նկարը):
Բութանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյունից դուրս (տես ներքևի նկարը):
Ներգծյալ շրջանագիծ․
Եթե բազմանկյան բոլոր կողմերը շոշափում են շրջանագիծը, ապա շրջանագիծը կոչվում է այդ բազմանկյան ներգծյալ շրջանագիծ:
Ներգծված շրջանագծի կենտրոնը պետք է հավասարահեռ լինի բազմանկյան կողմերից, այսինքն լինի կիսորդների հատման կետում:
Քանի որ եռանկյան անկյունների կիսորդները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի ներգծյալ շրջանագիծ:
Քանի որ, ցանկացած եռանկյան անկյունների կիսորդները հատվում են եռանկյան ներսում, ապա ներգծյալ շրջանագծի կենտրոնը միշտ գտնվում է եռանկյան ներսում:
Առաջադրանքներ.
1.Նշիր եռանկյունները, որոնց արտագծված է շրջանագիծ:
2.Նշիր եռանկյունները, որոնց ներգծված է շրջանագիծ:
3. Եռանկյանը ներգծված է շրջանագիծ: Հաշվիր <COA, <AOB, <COB եթե ∢OMN=32° և ∢ONL=37°
4.Ներգծյալ շրջանագծի շոշափման կետում հավասարասրուն եռանկյան սրունքը տրոհվում է 3սմ և 4սմ երկարությամբ հատվածների՝ հաշված հիմքից։ Գտեք այդ եռանկյան պարագիծը։
5.Գտեք 6 սմ և 8 սմ էջերով և 10 սմ ներքնաձիգով ուղղանկյուն եռանկյանը ներգծած շրջանագծի շառավիղը։
1)O կենտրոնով շրջանագծի AB աղեղը 90o է։ Գտեք O կետի հեռավորությունը AB լարից, եթե AB = 24 սմ։
2)O կենտրոնով շրջանագծի AB աղեղը 120o է։ Գտեք O կետի հեռավորությունը AB լարից, եթե շրջանագծի շառավիղը 20 սմ է։
3)AB — ն և AC — ն շրջանագծի լարեր են։ <BAC = 70o , աղեղ AB = 120o ։ Գտեք AC աղեղի աստիճանային չափը։
4)Շրջանագծում տարված են AB տրամագիծը և AC լարը։ Գտեք BAC անկյունը, եթե կիսաշրջանագիծը C կետով տրոհվում է AC և CB աղեղների, որոնց աստիճանային չափերը հարաբերում են, ինչպես 7 : 2 :
5)AB — ն շրջանագծի տրամագիծն է։ Շրջանագծի վրա վերցված է C կետն այնպես, որ BC լարը հավասար է շրջանագծի շառավիղին։ Գտեք ABC եռանկյան անկյունները։
Շրջանագծի ցանկացած երկու կետեր շրջանագիծը տրոհում են երկու մասի, որոնցից յուրաքանչյուրը կոչվում է շրջանագծի աղեղ:
Եթե շրջանագծի վրա նշենք երկու կետ, ապա առաջանում են երկու աղեղներ: Այդ պատճառով աղեղի նշանակման համար օգտագործում են լատիներեն երեք տառ, որոնք կարող են լինել ինչպես մեծատառեր, այնպես էլ՝ փոքրատառեր:
Վերևի նկարում կարող ենք նշել BDH, ACG և մյուս աղեղները:
Ներքևի նկարում գծված են AxB և AyB աղեղները:
Աղեղը կոչվում է կիսաշրջանագիծ, եթե նրա ծայրերը միացնող հատվածը այդ շրջանագծի տրամագիծ է:
Կենտրոնային անկյուն․
Անկյունը, որի գագաթը շրջանի կենտրոնն է, կոչվում է նրա կենտրոնային անկյուն:
Դիցուք O կենտրոնով շրջանի կենտրոնային անկյան կողմերը շրջանագիծը հատում են A և B կետերում: AOB կենտրոնային անկյանը համապատասխանում են A և B ծայրերով երկու աղեղ: Եթե <AOB-ն փռված է, ապա նրան համապատասխանում է երկու կիսաշրջանագիծ: Իսկ եթե անկյունը փռված չէ, ապա ասում են, որ այդ անկյան ներսում ընկած աղեղը փոքր է կիսաշրջանագծից, մյուսը՝ մեծ:
Շրջանագծի աղեղը կարելի է չափել աստիճաններով:
Եթե O կենտրոնով շրջանագծի AB աղեղը փոքր է կիսաշրջանագծից կամ կիսաշրջանագիծ է, ապա համարվում է, որ նրա աստիճանային չափը հավասար է AOB կենտրոնային անկյան աստիճանային չափին:
Իսկ եթե AB աղեղը մեծ է կիսաշրջանագծից, ապա համարվում է, որ նրա աստիճանային չափը հավասար է 3600 — <AOB:
Այստեղից հետևում է, որ շրջանագծի՝ ընդհանուր ծայրեր ունեցող երկու աղեղների աստիճանային չափերի գումարը հավասար է 3600:
Ներգծյալ անկյուն․
Այն անկյունը, որի գագաթն ընկած է շրջանագծի վրա, իսկ կողմերը շրջանագիծը հատում են, կոչվում է ներգծյալ անկյուն:
Ներգծյալ անկյունը չափվում է այն աղեղի կեսով, որի վրա նա հենվում է՝
∡ACB=1/2∪AB
1. Նույն աղեղի վրա հենված ներգծյալ անկյունները հավասար են:
2. Կիսաշրջանագծի վրա հենված ներգծյալ անկյունը 90° է:
Առաջադրանքներ․
1.Որքա՞ն է ներգծյալ անկյունը, որը հենված է 28° աստիճանային չափով աղեղի վրա:
2.Դիցուք BAC անկյունը 35° է: Որքա՞ն է BnC աղեղի աստիճանային չափը։
3.Գտիր ASB անկյունը, եթե ASB աղեղի աստիճանային չափը 268° է:
4.Գտիր BOC և BAC անկյունները, եթե ∪AB=130° ∪AC=150° ։
5.Հաշվիր AOB եռանկյան անկյունները, եթե ∪AB=100°։
6. ACB աղեղի աստիճանային չափը 260° է: Գտիր AOB և ACB անկյունները:
Կոնը կարելի է ստանալ՝ պտտելով POA ուղղանկյուն եռանկյունը իր էջերից որևէ մեկի, օրինակ՝ PO-ի շուրջ: Նույն կոնը կստացվի, եթե APB հավասարասրուն եռանկյունը պտտենք PO բարձրության շուրջ:
PO ուղիղը կոչվում է կոնի առանցք, որը պարունակում է կոնի H բարձրությունը:
Կոնի առանցքային հատույթը, որը անցնում է նրա գագաթով, հանդիսանում է PA և PB սրունքներով հավասարասրուն եռանկյուն: PA-ն և PB-ն կոչվում են կոնի ծնորդներ և նշանակվում են l տառով:
Եռանկյան պտույտից առաջացած O կենտրոնով շրջանը կոչվում է կոնի հիմք:
Կոնի շառավիղ կոչվում է նրա հիմքի R=OA=OB շառավիղը:
Առաջադրանքներ․
1)30o անկյուն ունեցող ուղղանկյուն եռանկյունը պտտվում է մեծ էջի շուրջը։ Գտեք պտտումից առաջացած կոնի ծնորդը, եթե այդ կոնի շառավիղը 15 սմ է:
2)Կոնի առանցքային հատույթը 12 սմ կողմով հավասարակողմ եռանկյուն է։ Որոշեք այդ կոնի շառավիղն ու ծնորդը։
3)Կոնի առանցքային հատույթը հավասարասրուն ուղղանկյուն եռանկյուն է, որի ներքնաձիգը 20 սմ է։ Գտեք այդ կոնի շառավիղը։
Գլան կարելի է ստանալ՝ պտտելով AA1O1O ուղղանկյունը իր կողմերից որևէ մեկի, օրինակ՝ OO1-ի շուրջ: Նույն գլանը կարելի է ստանալ՝ պտտելով AA1B1B ուղղանկյունն իր հանդիպակաց կողմերի միջնակետերով անցնող OO1 ուղղի շուրջ:
OO1 ուղիղը կոչվում է գլանի առանցք, AA1-ը և BB1-ը՝ ծնորդներ: Գլանի H բարձրությունը հավասար է OO1=AA1=BB1 հատվածներից յուրաքանչյուրին:
Պտտման ընթացքում առաջացած երկու շրջանները կոչվում են գլանի հիմքեր:
Գլանի R=OA=OB շառավիղ կոչվում է նրա հիմքի շառավիղը:
Գլանի առանցքով անցնող հարթության և գլանի ընդհանուր մասը կոչվում է գլանի առանցքային հատույթ: Գլանի առանցքային հատույթը ուղղանկյուն է: Վերևի նկարում դա AA1B1B ուղղանկյունն է:
Առաջադրանքներ․
1)Գլանաձև բաժակը կիսով չափ լցված է թեյով։Գոլորշիանալուց հետո թեյի հետքը մնացել էր բաժակի պատերին։ Երկրաչափական ի՞նչ պատկեր է այդ հետքը։
2)Գլանի առանցքային հատույթը քառակուսի է։ Գտեք գլանի ծնորդի և շառավիղի երկարությունների հարաբերությունը։
3)Գլանի առանցքային հատույթը 40 սմ պարագծով մի ուղղանկյուն է, որի անկյունագծերը փոխուղղահայաց են։ Գտեք գլանի շառավիղը։
4)Գլանի առանցքային հատույթը մի ուղղանկյուն է, որի անկյունագիծը ծնորդ հանդիսացող կողմի հետ կազմում է 60o -ի անկյուն։ Գտեք այդ անկյունագիծը, եթե գլանի ծնորդի երկարությունը 6 սմ է։
Եթե բազմանկյան բոլոր գագաթները գտնվում են շրջանագծի վրա, ապա շրջանագիծը կոչվում է այդ բազմանկյան արտագծյալ շրջանագիծ:
Շրջանագծի կենտրոնը հավասարահեռ է բազմանկյան բոլոր գագաթներից, հետևաբար այն գտնվում է բազմանկյան կողմերի միջնուղղահայացների հատման կետում:
Ոչ բոլոր բազմանկյուններն ունեն արտագծյալ շրջանագիծ՝ հաճախ բազմանկյան համար գոյություն չի ունենում այնպիսի շրջանագիծ, որը կանցնի բազմանկյան բոլոր գագաթներով:
Քանի որ եռանկյան կողմերի միջնուղղահայացները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի արտագծյալ շրջանագիծ:
Սուրանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյան ներսում (տես ներքևի նկարը):
Ուղղանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյան ներքնաձիգի միջնակետում (տես ներքևի նկարը):
Բութանկյուն եռանկյան դեպքում, արտագծյալ շրջանագծի կենտրոնը գտնվում է եռանկյունից դուրս (տես ներքևի նկարը):
Ներգծյալ շրջանագիծ․
Եթե բազմանկյան բոլոր կողմերը շոշափում են շրջանագիծը, ապա շրջանագիծը կոչվում է այդ բազմանկյան ներգծյալ շրջանագիծ:
Ներգծված շրջանագծի կենտրոնը պետք է հավասարահեռ լինի բազմանկյան կողմերից, այսինքն լինի կիսորդների հատման կետում:
Քանի որ եռանկյան անկյունների կիսորդները հատվում են նույն կետում, ապա ցանկացած եռանկյուն ունի ներգծյալ շրջանագիծ:
Քանի որ, ցանկացած եռանկյան անկյունների կիսորդները հատվում են եռանկյան ներսում, ապա ներգծյալ շրջանագծի կենտրոնը միշտ գտնվում է եռանկյան ներսում:
Առաջադրանքներ.
1.Նշիր եռանկյունները, որոնց արտագծված է շրջանագիծ:
2.Նշիր եռանկյունները, որոնց ներգծված է շրջանագիծ:
3. Եռանկյանը ներգծված է շրջանագիծ: Հաշվիր <COA, <AOB, <COB եթե ∢OMN=32° և ∢ONL=37°
4.Ներգծյալ շրջանագծի շոշափման կետում հավասարասրուն եռանկյան սրունքը տրոհվում է 3սմ և 4սմ երկարությամբ հատվածների՝ հաշված հիմքից։ Գտեք այդ եռանկյան պարագիծը։
5.Գտեք 6 սմ և 8 սմ էջերով և 10 սմ ներքնաձիգով ուղղանկյուն եռանկյանը ներգծած շրջանագծի շառավիղը։
1)O կենտրոնով շրջանագծի AB աղեղը 90o է։ Գտեք O կետի հեռավորությունը AB լարից, եթե AB = 24 սմ։
2)O կենտրոնով շրջանագծի AB աղեղը 120o է։ Գտեք O կետի հեռավորությունը AB լարից, եթե շրջանագծի շառավիղը 20 սմ է։
3)AB — ն և AC — ն շրջանագծի լարեր են։ <BAC = 70o , աղեղ AB = 120o ։ Գտեք AC աղեղի աստիճանային չափը։
4)Շրջանագծում տարված են AB տրամագիծը և AC լարը։ Գտեք BAC անկյունը, եթե կիսաշրջանագիծը C կետով տրոհվում է AC և CB աղեղների, որոնց աստիճանային չափերը հարաբերում են, ինչպես 7 : 2 :
5)AB — ն շրջանագծի տրամագիծն է։ Շրջանագծի վրա վերցված է C կետն այնպես, որ BC լարը հավասար է շրջանագծի շառավիղին։ Գտեք ABC եռանկյան անկյունները։
Շրջանագծի ցանկացած երկու կետեր շրջանագիծը տրոհում են երկու մասի, որոնցից յուրաքանչյուրը կոչվում է շրջանագծի աղեղ:
Եթե շրջանագծի վրա նշենք երկու կետ, ապա առաջանում են երկու աղեղներ: Այդ պատճառով աղեղի նշանակման համար օգտագործում են լատիներեն երեք տառ, որոնք կարող են լինել ինչպես մեծատառեր, այնպես էլ՝ փոքրատառեր:
Վերևի նկարում կարող ենք նշել BDH, ACG և մյուս աղեղները:
Ներքևի նկարում գծված են AxB և AyB աղեղները:
Աղեղը կոչվում է կիսաշրջանագիծ, եթե նրա ծայրերը միացնող հատվածը այդ շրջանագծի տրամագիծ է:
Կենտրոնային անկյուն․
Անկյունը, որի գագաթը շրջանի կենտրոնն է, կոչվում է նրա կենտրոնային անկյուն:
Դիցուք O կենտրոնով շրջանի կենտրոնային անկյան կողմերը շրջանագիծը հատում են A և B կետերում: AOB կենտրոնային անկյանը համապատասխանում են A և B ծայրերով երկու աղեղ: Եթե <AOB-ն փռված է, ապա նրան համապատասխանում է երկու կիսաշրջանագիծ: Իսկ եթե անկյունը փռված չէ, ապա ասում են, որ այդ անկյան ներսում ընկած աղեղը փոքր է կիսաշրջանագծից, մյուսը՝ մեծ:
Շրջանագծի աղեղը կարելի է չափել աստիճաններով:
Եթե O կենտրոնով շրջանագծի AB աղեղը փոքր է կիսաշրջանագծից կամ կիսաշրջանագիծ է, ապա համարվում է, որ նրա աստիճանային չափը հավասար է AOB կենտրոնային անկյան աստիճանային չափին:
Իսկ եթե AB աղեղը մեծ է կիսաշրջանագծից, ապա համարվում է, որ նրա աստիճանային չափը հավասար է 3600 — <AOB:
Այստեղից հետևում է, որ շրջանագծի՝ ընդհանուր ծայրեր ունեցող երկու աղեղների աստիճանային չափերի գումարը հավասար է 3600:
Ներգծյալ անկյուն․
Այն անկյունը, որի գագաթն ընկած է շրջանագծի վրա, իսկ կողմերը շրջանագիծը հատում են, կոչվում է ներգծյալ անկյուն:
Ներգծյալ անկյունը չափվում է այն աղեղի կեսով, որի վրա նա հենվում է՝
∡ACB=1/2∪AB
1. Նույն աղեղի վրա հենված ներգծյալ անկյունները հավասար են:
2. Կիսաշրջանագծի վրա հենված ներգծյալ անկյունը 90° է:
Առաջադրանքներ․
1.Որքա՞ն է ներգծյալ անկյունը, որը հենված է 28° աստիճանային չափով աղեղի վրա:
2.Դիցուք BAC անկյունը 35° է: Որքա՞ն է BnC աղեղի աստիճանային չափը։
3.Գտիր ASB անկյունը, եթե ASB աղեղի աստիճանային չափը 268° է:
4.Գտիր BOC և BAC անկյունները, եթե ∪AB=130° ∪AC=150° ։
5.Հաշվիր AOB եռանկյան անկյունները, եթե ∪AB=100°։
6. ACB աղեղի աստիճանային չափը 260° է: Գտիր AOB և ACB անկյունները:
Կոնը կարելի է ստանալ՝ պտտելով POA ուղղանկյուն եռանկյունը իր էջերից որևէ մեկի, օրինակ՝ PO-ի շուրջ: Նույն կոնը կստացվի, եթե APB հավասարասրուն եռանկյունը պտտենք PO բարձրության շուրջ:
PO ուղիղը կոչվում է կոնի առանցք, որը պարունակում է կոնի H բարձրությունը:
Կոնի առանցքային հատույթը, որը անցնում է նրա գագաթով, հանդիսանում է PA և PB սրունքներով հավասարասրուն եռանկյուն: PA-ն և PB-ն կոչվում են կոնի ծնորդներ և նշանակվում են l տառով:
Եռանկյան պտույտից առաջացած O կենտրոնով շրջանը կոչվում է կոնի հիմք:
Կոնի շառավիղ կոչվում է նրա հիմքի R=OA=OB շառավիղը:
Առաջադրանքներ․
1)30o անկյուն ունեցող ուղղանկյուն եռանկյունը պտտվում է մեծ էջի շուրջը։ Գտեք պտտումից առաջացած կոնի ծնորդը, եթե այդ կոնի շառավիղը 15 սմ է:
2)Կոնի առանցքային հատույթը 12 սմ կողմով հավասարակողմ եռանկյուն է։ Որոշեք այդ կոնի շառավիղն ու ծնորդը։
3)Կոնի առանցքային հատույթը հավասարասրուն ուղղանկյուն եռանկյուն է, որի ներքնաձիգը 20 սմ է։ Գտեք այդ կոնի շառավիղը։
Գլան կարելի է ստանալ՝ պտտելով AA1O1O ուղղանկյունը իր կողմերից որևէ մեկի, օրինակ՝ OO1-ի շուրջ: Նույն գլանը կարելի է ստանալ՝ պտտելով AA1B1B ուղղանկյունն իր հանդիպակաց կողմերի միջնակետերով անցնող OO1 ուղղի շուրջ:
OO1 ուղիղը կոչվում է գլանի առանցք, AA1-ը և BB1-ը՝ ծնորդներ: Գլանի H բարձրությունը հավասար է OO1=AA1=BB1 հատվածներից յուրաքանչյուրին:
Պտտման ընթացքում առաջացած երկու շրջանները կոչվում են գլանի հիմքեր:
Գլանի R=OA=OB շառավիղ կոչվում է նրա հիմքի շառավիղը:
Գլանի առանցքով անցնող հարթության և գլանի ընդհանուր մասը կոչվում է գլանի առանցքային հատույթ: Գլանի առանցքային հատույթը ուղղանկյուն է: Վերևի նկարում դա AA1B1B ուղղանկյունն է:
Առաջադրանքներ․
1)Գլանաձև բաժակը կիսով չափ լցված է թեյով։Գոլորշիանալուց հետո թեյի հետքը մնացել էր բաժակի պատերին։ Երկրաչափական ի՞նչ պատկեր է այդ հետքը։
2)Գլանի առանցքային հատույթը քառակուսի է։ Գտեք գլանի ծնորդի և շառավիղի երկարությունների հարաբերությունը։
3)Գլանի առանցքային հատույթը 40 սմ պարագծով մի ուղղանկյուն է, որի անկյունագծերը փոխուղղահայաց են։ Գտեք գլանի շառավիղը։
4)Գլանի առանցքային հատույթը մի ուղղանկյուն է, որի անկյունագիծը ծնորդ հանդիսացող կողմի հետ կազմում է 60o -ի անկյուն։ Գտեք այդ անկյունագիծը, եթե գլանի ծնորդի երկարությունը 6 սմ է։
Գլան կարելի է ստանալ՝ պտտելով AA1O1O ուղղանկյունը իր կողմերից որևէ մեկի, օրինակ՝ OO1-ի շուրջ: Նույն գլանը կարելի է ստանալ՝ պտտելով AA1B1B ուղղանկյունն իր հանդիպակաց կողմերի միջնակետերով անցնող OO1 ուղղի շուրջ:
OO1 ուղիղը կոչվում է գլանի առանցք, AA1-ը և BB1-ը՝ ծնորդներ: Գլանի H բարձրությունը հավասար է OO1=AA1=BB1 հատվածներից յուրաքանչյուրին:
Պտտման ընթացքում առաջացած երկու շրջանները կոչվում են գլանի հիմքեր:
Գլանի R=OA=OB շառավիղ կոչվում է նրա հիմքի շառավիղը:
Գլանի առանցքով անցնող հարթության և գլանի ընդհանուր մասը կոչվում է գլանի առանցքային հատույթ: Գլանի առանցքային հատույթը ուղղանկյուն է: Վերևի նկարում դա AA1B1B ուղղանկյունն է:
Առաջադրանքներ․
1)Գլանաձև բաժակը կիսով չափ լցված է թեյով։Գոլորշիանալուց հետո թեյի հետքը մնացել էր բաժակի պատերին։ Երկրաչափական ի՞նչ պատկեր է այդ հետքը։
շրջանագիծ:
2)Գլանի առանցքային հատույթը քառակուսի է։ Գտեք գլանի ծնորդի և շառավիղի երկարությունների հարաբերությունը։
2/1
3)Գլանի առանցքային հատույթը 40 սմ պարագծով մի ուղղանկյուն է, որի անկյունագծերը փոխուղղահայաց են։ Գտեք գլանի շառավիղը։
5
4)Գլանի առանցքային հատույթը մի ուղղանկյուն է, որի անկյունագիծը ծնորդ հանդիսացող կողմի հետ կազմում է 60o -ի անկյուն։ Գտեք այդ անկյունագիծը, եթե գլանի ծնորդի երկարությունը 6 սմ է։
Շրջանագիծ կոչվում է երկրաչափական այն պատկերը, որը կազմված է հարթության բոլոր այն կետերից, որոնք գտնվում են տրված կետից տրված հեռավորության վրա:
Այդ կետը կոչվում է շրջանագծի կենտրոն, իսկ տրված հեռավորությունը՝ շրջանագծի շառավիղ:
Շառավիղը հատված է, որը միացնում է շրջանագծի կենտրոնը շրջանագծի ցանկացած կետի հետ: Սահմանումից հետևում է, որ կարելի է տանել անվերջ թվով շառավիղներ, և դրանք բոլորը կունենան միևնույն երկարությունը:
Շրջանագծի երկու կետեր միացնող հատվածը կոչվում է լար:
Եթե լարը անցնում է շրջանագծի կենտրոնով, ապա այն կոչվում է շրջանագծի տրամագիծ:
Տրամագիծն ամենաերկար լարն է:
Շրջանագծում կարելի է տանել նաև անվերջ թվով տրամագծեր:
Շրջանագծի ցանկացած երկու կետեր շրջանագիծը տրոհում են երկու մասի, որոնցից յուրաքանչյուրը կոչվում է շրջանագծի աղեղ:
Եթե շրջանագծի վրա նշենք երկու կետ, ապա առաջանում են երկու աղեղներ: Այդ պատճառով աղեղի նշանակման համար օգտագործում են լատիներեն երեք տառ, որոնք կարող են լինել ինչպես մեծատառեր, այնպես էլ՝ փոքրատառեր:
Վերևի նկարում կարող ենք նշել BDH, ACG և մյուս աղեղները:
Ներքևի նկարում գծված են AxB և AyB աղեղները:
Լարի միջնակետով անցնող շառավիղը
1.Լարի միջնակետով անցնող շառավիղը ուղղահայաց է այդ լարին։
2․Լարը հատող և նրան ուղղահայաց շառավիղն անցնում է այդ լարի միջնակետով։
Առաջադրանքներ․
1)Հաշվիր CA -ն, եթե CD=8 սմ և ∢AOD=120°
OC=OA=CA=>CA=4
2)Տրված են շրջանագիծ և մի քանի հատվածներ: Որո՞նք են դրանցից հանդիսանում շառավիղներ, լարեր և տրամագծեր:
FC+լար
CD=տրամագիծ
EB=տրամագիծ
NB=տրամագիծ
3) Ընտրիր շրջանագծի լարը:
Կարող են լինել մի քանի ճիշտ պատասխաններ:
NM
LK
4) Ո՞ր հատվածներն են հանդիսանում շրջանագծի տրամագիծ:
KG
FH
5) Տրված է՝ MN=7սմ, ∢ONM=60°։Գտիր՝ KN-ը։
MN=NO=>7+7=14
6)ABCD զուգահեռագծի B գագաթից АD կողմին տարված է BH բարձրությունը, որ AB կողմի հետ կազմում է 40 աստիճանի անկյուն։ Գտեք զուգահեռագծի բոլոր անկյունները։
7)Զուգահեռագծի պարագիծը 100սմ է:Նրա կողմերից մեկը մյուսից մեծ է 10սմ-ով: Գտեք զուգահեռագծի կողմերը: