կոտորակ

Միևնույն հայտարարով A/B և C/B հանրահաշվական կոտորակները գումարում և հանում են հետևյալ կանոնով՝

Իսկ եթե կոտորակները ունեն տարբեր հայտարարներ, ապա նախ դրանք բերում ենք ընդհանուր հայտարարի, նոր գումարում կամ հանում ըստ (1) և (2) կանոնների:

A/B և C/D հանրահաշվական կոտորակների բազմապատկումն ու բաժանումը կատարում են հետևյալ կանոնով՝

Առաջադրանքներ

1)Կատարեք գործողությունները․

1.x+y/3

2.a-b/7

3.2x-3y/5

4.5m+3n/4

5.x+3x/4=4x/4=x

6.7a+3a/8=10a/8=2

2)Կատարեք գործողությունները․

1.x/2

2.a/3

3.ab/5

4.xy/7

5.3x/3

6.a/8

3)Կատարեք գործողությունները․

1.-(x-1)/x-1=-1

2.2/x-y

3.5a/a-b

4.5m-3/n-m

5.

6.

հանրահաշիվ

Թվային արտահայտությունը կազմվում է թվերից, թվաբանական գործողությունների նշաններից և փակագծերից:

Թվային արտահայտության գործողությունների արդյունքում ստացված թիվը կոչվում է թվային արտահայտության արժեք:

Եթե թվային արտահայտությունը պարունակում է նաև տառեր (կամ միայն տառեր), ապա այն կոչվում է հանրահաշվական արտահայտություն:

Հանրահաշվական կոտորակ կոչվում է AB տեսքի արտահայտությունը, որտեղ A-ն որևէ բազմանդամ է, իսկ B-ն՝ ոչ զրոյական բազմանդամ:

Հանրահաշվական կոտորակը բազմանդամի և ոչ զրոյական բազմանդամի քանորդ է:

x/x−3; b−1/b+6; 1+x3/x2+1; y+2/y2−6y+6 արտահայտությունները հանրահաշվական կոտորակներ են:

Հանրահաշվական կոտորակների հիմնական հատկությունը

Կոտորակի համարիչի և հայտարարի նույն թվի վրա բաժանելը կոչվում է կոտորակի կրճատում:

Հանրահաշվական կոտորակի արժեքը չի փոխվի, եթե նրա համարիչը և հայտարարը բազմապատկենք միևնույն արտահայտությամբ, որի արժեքը զրոյից տարբեր է:

mat.png

Հանրահաշվական կոտորակի արժեքը չի փոխվի, եթե նրա համարիչը և հայտարարը բազմապատկենք միևնույն արտահայտությամբ, որի արժեքը զրոյից տարբեր է:

203.PNG

Հաճախ հանրահաշվական կոտորակների հետ գործողություններ կատարելիս, պետք է լինում փոխարինել կոտորակի համարիչը կամ հայտարարը հակադիրով: Սակայն, որպեսզի կոտորակի արժեքը չփոխվի, պետք է հետևել նշանի փոփոխության կանոններին՝

կոտորակի արժեքը չի փոխվի, եթե 

— փոխենք համարիչի և հայտարարի նշանները,

— փոխենք համարիչի և ամբողջ կոտորակի նշանները,  

— փոխենք հայտարարի և ամբողջ կոտորակի նշանները:

Եթե A-ով և B-ով նշանակենք հանրահաշվական կոտորակի համարիչն ու հայտարարը, ապա նշանի փոփոխման կանոնը կարելի է գրել հետևյալ կերպ՝  

225.PNG
227.PNG

1)Կրճատե՛ք կոտորակները․

1.(x+y)/2ax

2.1

3.2/5

4.1/2

5.1/4xy

6.5m/7n(a-b)

7.p/2q

8.4a+b/9

2)Կրճատե՛ք կոտորակները․

1.-1

2.-2/3

3.-4mn/2m

4.3a/7

Լրացուցիչ աշխատանք (տանը)․

Կրճատե՛ք կոտորակները․

1.1/2

2.8/4

3.45/5

4.256/14

5.6/2a

6.14a/7ab

7.x/x

8.4mn

9.6abc

10.9xyz

11/6/2024

Թվային արտահայտությունը կազմվում է թվերից, թվաբանական գործողությունների նշաններից և փակագծերից:

Թվային արտահայտության գործողությունների արդյունքում ստացված թիվը կոչվում է թվային արտահայտության արժեք:

Եթե թվային արտահայտությունը պարունակում է նաև տառեր (կամ միայն տառեր), ապա այն կոչվում է հանրահաշվական արտահայտություն:

Հանրահաշվական կոտորակ կոչվում է AB տեսքի արտահայտությունը, որտեղ A-ն որևէ բազմանդամ է, իսկ B-ն՝ ոչ զրոյական բազմանդամ:

Հանրահաշվական կոտորակը բազմանդամի և ոչ զրոյական բազմանդամի քանորդ է:

x/x−3; b−1/b+6; 1+x3/x2+1; y+2/y2−6y+6 արտահայտությունները հանրահաշվական կոտորակներ են:

Հանրահաշվական կոտորակների հիմնական հատկությունը

Կոտորակի համարիչի և հայտարարի նույն թվի վրա բաժանելը կոչվում է կոտորակի կրճատում:

Հանրահաշվական կոտորակի արժեքը չի փոխվի, եթե նրա համարիչը և հայտարարը բազմապատկենք միևնույն արտահայտությամբ, որի արժեքը զրոյից տարբեր է:

mat.png

Հանրահաշվական կոտորակի արժեքը չի փոխվի, եթե նրա համարիչը և հայտարարը բազմապատկենք միևնույն արտահայտությամբ, որի արժեքը զրոյից տարբեր է:

203.PNG

Հաճախ հանրահաշվական կոտորակների հետ գործողություններ կատարելիս, պետք է լինում փոխարինել կոտորակի համարիչը կամ հայտարարը հակադիրով: Սակայն, որպեսզի կոտորակի արժեքը չփոխվի, պետք է հետևել նշանի փոփոխության կանոններին՝

կոտորակի արժեքը չի փոխվի, եթե 

— փոխենք համարիչի և հայտարարի նշանները,

— փոխենք համարիչի և ամբողջ կոտորակի նշանները,  

— փոխենք հայտարարի և ամբողջ կոտորակի նշանները:

Եթե A-ով և B-ով նշանակենք հանրահաշվական կոտորակի համարիչն ու հայտարարը, ապա նշանի փոփոխման կանոնը կարելի է գրել հետևյալ կերպ՝  

225.PNG
227.PNG

Առաջադրանքներ․

1)Հետևյալ կոտորակներից ո՞րն է հավասար 2/(x−14)-ի:

Ընտրի՛ր պատասխանի ճիշտ տարբերակը:

  • −(x+14)/−2
  • −2/−(x−14)+
  • (x−14)/−2
  • 2/(14−x)
  • −2/(14−x)+

2)Կոտորակը ձևափոխեք այնպես, որ նրա առջև դրված նշանը փոխվի հակադիրով՝

-(1-a)/-a

-x/x-3

-x+y/x+y

a-1/a-2

3)Կոտորակները բերեք 36x2 հայտարարի`

5x2/36x2

72/36x2

4)A միանդամը կամ բազմանդամը ընտրեք այնպես, որ ստացվի ճիշտ հավասարություն՝

a=4

Լրացուցիչ աշխատանք (տանը)․

1)Կիրառելով հանրահաշվական կոտորակների հիմնական հատկությունը, ∗-ի փոխարեն գրիր այնպիսի արտահայտություն, որ ստացվի ճիշտ հավասարություն`

∗/9p=t2/p

2)2z/7y կոտորակը բերե՛ք 42y հայտարարի:

Ընտրի՛ր պատասխանի ճիշտ տարբերակը:

  • 12z/42y
  • 6z/42y
  • 2z/42y

3)Կոտորակները բերեք 20x2y հայտարարի`

4)A միանդամը կամ բազմանդամը ընտրեք այնպես, որ ստացվի ճիշտ հավասարություն՝

հանրահաշիվ

1.a-1        2.a1

3.a4         4.a

5.a-10       6.a9

7.a1         8.a9

9.a-3        10.a-8

1.27          2.56

3.4 5          4.7 7

5.3 13        6.613

7.166        8.915

1.5/62             2.2/29          3.25/494          4.m/a7          5.m/a8         6.n/a12

ՀԱՆՐԱՀԱՇԻՎ

Թվային արտահայտությունը կազմվում է թվերից, թվաբանական գործողությունների նշաններից և փակագծերից:

Թվային արտահայտության գործողությունների արդյունքում ստացված թիվը կոչվում է թվային արտահայտության արժեք:

Եթե արտահայտության մեջ պատահում է բաժանում զրոյի վրա, ապա այդ արտահայտությունն արժեք (իմաստ) չունի: Զրոյի վրա բաժանել չի կարելի:  

(−3)2+5⋅0,2 թվային արտահայտության արժեքը հավասար է 10-ի:

(7−(−2)5+(6⋅4))0 արտահայտությունն արժեք չունի:

Եթե թվային արտահայտությունը պարունակում է նաև տառեր (կամ միայն տառեր), ապա այն կոչվում է հանրահաշվական արտահայտություն:

(−3)2+5x;3a+4b;(2x−6)/3 արտահայտությունները հանրահաշվական են:

Հանրահաշվական կոտորակ կոչվում է A/B տեսքի արտահայտությունը, որտեղ A-ն որևէ բազմանդամ է, իսկ B-ն՝ ոչ զրոյական բազմանդամ:

Հանրահաշվական կոտորակը բազմանդամի և ոչ զրոյական բազմանդամի քանորդ է:

x/(x−3);(b−1)/(b+6);(1+x3)/(x2+1);(y+2)/(y2−6y+6)արտահայտությունները հանրահաշվական կոտորակներ են:

Իմանալով իրական թվերի բազմապատկման կանոնը՝ սահմանենք իրական թվի ամբողջ ցուցիչով աստիճանը:

Եթե n-ը բնական թիվ է և a≠0, ապա՝

1. an=a⋅a⋅⋅⋅a n  անգամ

2. a−n=1/an

Օրինակ

4−3=1/43=1/64

7−2=1/72=1/49

Օգտվելով իրական թվերի բազմապատկման օրենքներից՝ դժվար չէ համոզվել, որ այս ձևով սահմանված ամբողջ ցուցիչով աստիճանն ունի հետևյալ հատկությունները՝ 

1.aman=am+n

2.am/an=am−n

3.anbn=(ab)n

4.an/bn=(a/b)n

5.(an)m=anm

Առաջադրանքներ

1)Հաշվե՛ք․

ա)50 =1

բ)(-1/3)0 =1

գ)(-1,2)0 =1

դ)(-1)0 =1

2)Հաշվե՛ք․

ա)24 / 23 =21=2

բ)24 / 24 =20=1

գ)(-0,3)4 / (-0,3)5 =(-0,3)-1 =-1/0,3

դ)0,27 / 0,25 =0,22=0,2

3)Գրե՛ք ամբողջ ցուցիչով աստիճանի տեսքով․

ա)2 · 2 · 2 =8

բ)23 · 25 =48

գ)1 / 32 =32

դ)4 =4

ե)0,56/0,57 =

զ)(-1/5)3 : (-1/5)7 =

4)Համեմատե՛ք․

ա)50 = (-5)0

բ)5-2 < 52

գ)(-2)3 > (-2)0

5)Գրե՛ք ամբողջ ցուցիչով աստիճանի տեսքով․

ա)a3 · a4 =a7

բ)a4 · a =a5

գ)a13 : a6 =a7

դ)a4 · b4 =ab8

Լրացուցիչ աշխատանք (տանը).

1)Հաշվե՛ք․

ա)24 / 25 =2-1

բ)25 / 27 =2-2

գ)35 / 34 =31

դ)3100 / 3100 =3200

2)Գրե՛ք ամբողջ ցուցիչով աստիճանի տեսքով․

ա)1/3 =1/3

բ)1/3 · 3 · 3 · 3 =1/54

գ)5 =5

դ)1/16 =1/16

ե)1/25 =1/25

զ)23 : 23 =

է)97/ 95 =

3)Համեմատե՛ք․

ա)-32 և (-3)2

բ)(-2)4 և 2-4

գ)-24 և 2-4

4)Գրե՛ք ամբողջ ցուցիչով աստիճանի տեսքով․

ա)a12 : a =

բ)(a4)6 =

գ)(a2)5 =

դ)a7 · b7 =

ՀԱՆՐԱՀԱՇԻՎ

Առաջադրանքներ

1)Պարզեք՝ (-3;1) թվազույգը համակարգի լուծու՞մ է․

1)-3+1-3=-5  ոչ

2)-6-3-1=0 այո

1.-3-1+4=0  այո

2.-9+4+5=0 այո

2)Ցույց տվեք, որ (-2;1) թվազույգը համակարգի լուծում չէ․

1)-4x-1+5=0 այո

2)-2+1-3=0 այո

1)-4x+5y-1=0 այո

2)-6x-4=0 ոչ

3)a-ի և b-ի ի՞նչ արժեքների դեպքում (1;0) թվազույգը համակարգի լուծում է․